E.g. Find the area of the inner leaf of the curve

$$
r=1+2 \sin (\theta) \theta=\pi / 2
$$

find stunt \& stop B
when $r=0$
known $\sin (\pi / 6)=\frac{1}{2}$
when $1+2 \sin \theta=0$

$$
\begin{aligned}
2 \sin \theta & =-1 \\
\sin \theta & =\frac{-1}{2}
\end{aligned}
$$

pish: θ start $=7 \pi / 6$ stan $\}$ is is stop $=11 \pi / 6$
picked $\theta_{\text {start }}=7 \pi / 6$
sanity check:

$$
\text { e stop }=11 \pi / 6
$$

thought a bout how the inside loop was graphed.

$$
\begin{aligned}
& \text { Set up } \theta \text { compute } \\
& \text { area inside }=\int_{7 \pi / 6}^{11 \pi / 6} \frac{1}{2} r^{2} d \theta \\
&=\int_{7 \pi / 6}^{11 \pi / 6} \frac{1}{2} \frac{(1+2 \cdot \sin \theta)^{2}}{\text { FoIL first }} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{7 \pi / 6}^{11 \pi / 6} \frac{1}{2}\left(1+4 \sin \theta+4 \cdot \sin ^{2} \theta\right) d \theta \\
& =\int_{7 \pi / 6}^{\pi \pi / 6} \frac{1}{2}+2 \cdot \sin \theta+\theta \sin ^{2} \theta \frac{d \theta}{\operatorname{wa}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left[\frac{1}{2} \theta+2 \cdot(-\cos \theta)+\theta-\frac{\sin (2 \theta)}{2}\right]_{7 \pi / 6}^{i \pi / 6}(10) \right\rvert\, \frac{d}{d \theta}\left(\frac{\sin (2 \theta))}{2}\right]=\frac{\cos (2 \theta)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\frac{3}{2} \theta-2 \cdot \cos \theta-\frac{\sin (2 \theta)}{2}\right]_{7 \pi / 6}^{1 \pi / 6}} \\
& =(\frac{3}{2} \frac{11 \pi}{6}-2 \cdot \frac{\cos \left(\frac{11 \pi}{6}\right)-\frac{\sin (\overbrace{2 \cdot \frac{11 \pi}{6}}^{6})}{2})}{} \begin{array}{l}
\frac{7 \pi / 3}{6} \\
\left.-\left(\frac{3}{2} \cdot \frac{7 \pi}{6}-\frac{2 \cdot \cos \left(\frac{7 \pi}{6}\right)}{}\right)-\frac{\sin (\pi / 6)=\frac{\sqrt{3}}{2}}{2}\right) \\
=\left(\frac{11}{4} \pi-2 \cdot\left(+\frac{\sqrt{3}}{2}\right)-\frac{1}{2} \cdot\left(-\frac{\sqrt{3}}{2}\right)\right) \\
\left.=\left(\frac{7 \pi}{4}-2 \cdot\left(-\frac{\sqrt{3}}{2}\right)-\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)\right)
\end{array}, \quad \sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}
\end{aligned}
$$

collecting like terms,

$$
\begin{aligned}
& =\frac{11 \pi}{4}-\frac{7 \pi}{4}-\frac{2 \sqrt{3}}{2}-\frac{2 \sqrt{3}}{2}+\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4} \\
& =\frac{4 \pi}{4}-\frac{-2 \sqrt{3}}{2}-\frac{2 \sqrt{3}}{2}+\frac{\sqrt{3}}{4} \\
& =\pi-\frac{3 \sqrt{3}}{2}
\end{aligned}
$$

